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ABSTRACT

Aim Species distribution models are often used to project species distributions

to different environmental conditions. However, most models do not consider

whether the importance of abiotic factors may change over time. If they

change, this has implications for the assessment of how abiotic changes affect

species distributions. Here, we use spatially explicit historical data on species

occurrences, climate and land use to test whether the importance of different

climatic and land-use drivers as determinants of species distributions has

remained constant over a period of > 60 years (1951–2014).

Location The Netherlands.

Methods Using species distribution models and a comprehensive country-

wide dataset at 5 9 5 km resolution, we modelled the distribution of a total of

398 pollinator species (bees, butterflies and hoverflies) for three periods

(1951–1970, 1971–1990 and 1998–2014). We then evaluated whether the

importance of variables related to climate (precipitation, temperature) and land

use (landscape composition and habitat fragmentation) in determining pollina-

tor distributions has changed over time.

Results Variables related to landscape composition were highly important in

determining pollinator distributions in all periods. Precipitation was generally

less important than temperature, and habitat fragmentation less than landscape

composition. Land-use variables remained equally important across time for all

pollinator groups, except for bees where the importance of habitat fragmenta-

tion decreased significantly over time. Among climate variables, the importance

of precipitation did not change across time for any pollinator group. However,

the importance of temperature increased significantly in recent times for bees

and hoverflies.

Main conclusions Determinants of species distributions can change in their

importance over time when changes in the magnitude and range of environ-

mental conditions occur. Given future temperature rises, our results imply that

species distribution models calibrated with current climatic conditions may not

adequately predict the future importance of environmental factors in driving

species distributions.
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INTRODUCTION

Recent rapid changes in climatic conditions (e.g. temperature

and precipitation; McCain & Colwell, 2011) have raised con-

siderable concerns about their effect on biodiversity (e.g.

Thomas et al., 2004). For instance, changes in temperature

(Dawson et al., 2011) and the increase of extreme weather

events (Hansen et al., 2012) have led to important changes

in biodiversity around the globe. Moreover, during the last

century, biodiversity has experienced alarming declines and

functional shifts due to the effects of land-use changes such

as habitat loss (Meyfroidt & Lambin, 2011), habitat fragmen-

tation (Krauss et al., 2010) and land-use intensification

(Tscharntke et al., 2005). Climate and land-use change are,

therefore, considered to be key drivers of biodiversity loss

today and, particularly when combined, they can reduce suit-

able habitats for species and disrupt ecological interactions,

potentially driving species to extinction (Fox et al., 2014).

Climate and land-use are unlikely to change in parallel

(Fox et al., 2014). For example, the rate of temperature rise

increased in recent decades (Hansen et al., 2012), while

major habitat changes in several industrialized countries were

more intense before 1970 (Fuchs et al., 2015). In regions that

have experienced strong climate and land-use changes, the

range and magnitudes of environmental variables have thus

changed through time. If a given climate or land-use variable

changes, the range and magnitude of this environmental

variable might increase to values that are not equally suitable

for a species. Consequently, the importance of such a vari-

able in determining the distribution of species will also

increase. However, if the range of values of an environmental

variable (within the study region) is equally suitable or

unsuitable to a species, the importance of this variable in

determining the distribution of a species will be minimal.

Therefore, the magnitude of the effect of an environmental

variable in determining the distribution of a species depends

on the range of values the environmental variable has within

the study area, but also on the spatial scale (extent and grain

size) of the dataset (Pearson & Dawson 2003). The different

temporal and regional patterns of climate and land-use vari-

ables and their range of values may thus impose different

effects on the distribution of biodiversity.

Several tools have been developed to investigate changes in

climate and land-use conditions (see Klein Goldewijk et al.,

2011; Stocker et al., 2013) and how these changes may

impact the distribution of biodiversity (Elith & Leathwick,

2009). Species distribution models (SDMs; Thuiller, 2004)

are often used to analyse the effects of climate and land use

on biodiversity and to project species distributions under

potential future global change scenarios. Generally, SDM

projections into the future are based on present-day species

responses to climatic and land-use drivers, which are then

extrapolated across time using future climate and land-use

scenarios. However, changes in the importance of drivers of

species distributions across space and time are little explored.

This is of potential concern for the extrapolation of SDMs to

areas where the range of values of the environmental vari-

ables differs to areas where the model was trained, e.g. in the

case of expanding range margins under climate change

(Eskildsen et al., 2013). Recent studies suggest that the selec-

tion of predictors and the range of environmental conditions

across different time periods and study regions is, therefore,

of central importance for accurate predictions of SDMs (e.g.

Randin et al., 2006; Austin & Van Niel, 2011). Hence, it is

crucial to evaluate how variability in global change drivers

affects their importance in SDMs for driving species distribu-

tions. A key limitation for such evaluations is that future

empirical data are not available against which projections

can be validated. However, the availability of historical infor-

mation on biodiversity and environmental factors across the

same spatial domain allows for exploring the dynamics of

such relationships and the validation of model results.

Here, we use a unique set of spatially explicit species

occurrence records of several groups of flower visitors (bees,

butterflies and hoverflies; hereafter referred to as ‘pollina-

tors’) and environmental data from the Netherlands from

1951 to 2014 to investigate whether the importance of cli-

mate (temperature and precipitation) and land use (i.e. land-

scape composition and habitat fragmentation) as drivers of

species distributions has changed over time. A pollinator’s

access to feeding and nesting resources greatly depends on

landscape conditions (Winfree et al., 2011). We, therefore,

expect landscape composition and habitat fragmentation to

be of high importance in determining species distributions.

Moreover, although small-scale land-use changes are still tak-

ing place, most large-scale land-use changes in the Nether-

lands have occurred before the 1990s and land-use dynamics

are now less accentuated (Harms et al., 1987; European

Environment Agency 2010). Hence, we expect that the

importance of land-use factors has decreased or remained

relatively constant over the considered time period. The

recently recorded changes in precipitation regimes and tem-

perature in our study area (Klein Tank, 2004; Ligtvoet et al.,

2013) might have led to changes in habitat suitability for

Dutch pollinators. Specifically, we expect that climate has

recently become more important in determining species dis-

tributions than in previous decades. Finally, as species func-

tional traits that constrain their tolerance and responses to

environmental changes vary between the different pollinator

groups (Aguirre-Guti�errez et al., 2016), we expect that the

importance of a given environmental variable for driving the

distribution of species within the study region might differ

between pollinator groups.

MATERIALS AND METHODS

Study region and time periods

The Netherlands has been intensely sampled for biodiversity

since the early 19th century, with high-quality species distri-

bution data being available at the country level across several
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decades. The Netherlands has also experienced major changes

in climate (KNMI, 2014) and land-use conditions (Knol

et al., 2004; Hazeu et al., 2010) over the last century. All

three aspects (biodiversity, climate and land use) are well

documented with spatially explicit data across more than

50 years. Important increases in average temperature in the

Netherlands have been recorded over the last century

(c. 1.7°C; Ligtvoet et al., 2013), with the most rapid warming

taking place during the last 20 years (Klein Tank, 2004). This

might strongly affect the distribution of pollinators. Impor-

tant changes in the temporal distribution and amount of

precipitation have also been observed, with the average

annual winter precipitation increasing by c. 20% during the

last century (Klein Tank, 2004; Ligtvoet et al., 2013). In

addition, after the Second World War (i.e. during 1950–
1970), the Netherlands suffered rapid natural vegetation loss

and pronounced agricultural intensification with an associ-

ated increase in pesticide use (Harms et al., 1987). After

1990, there was an increasing investment in conservation

measures and agro-environmental schemes, especially since

the turn of the millennium (Kleijn & Sutherland, 2003).

Given these observed changes in climate and land use, we

binned the occurrence records (see below) into three dis-

tinct time periods (TP1: 1951–1970, TP2: 1971–1990, TP3:
1998–2014) and analysed whether the importance of envi-

ronmental conditions in determining species distributions

has changed over time.

Species distribution data

We included three key pollinator taxa in our study: bees

(Hymenoptera: Apoidea), hoverflies (Diptera: Syrphidae) and

butterflies (Lepidoptera: Papilionoidea and Hesperioidea).

Presence records for each species across the three time peri-

ods were obtained for bees and hoverflies from the European

Invertebrate Survey (EIS-Nederland, www.eis-nederland.nl)

and for butterflies from the Dutch National Database of

Flora and Fauna (NDFF, www.ndff.nl). Experts from the EIS

and the NDFF have extensively assessed the quality of species

identification and location accuracy of all species presence

records that we included in our study. More details about

the quality evaluation can be found at www.ndff.nl/validatie.

All species occurrence records were compiled at a resolu-

tion of 5 9 5 km grid cells to accommodate the higher

uncertainty in geographical coordinates of the older records

relative to the higher location accuracy of the more recent

records. To be able to include rare and narrowly distributed

species (which are likely to be more strongly affected by

changes in environmental conditions), we included species

that were present in as few as ten 5 9 5 km grid cells and

only those that were represented in each of the three time

periods. Our selection criteria allowed us to analyse a total

of 398 pollinator species, including 178 bee species, 52 but-

terfly species, and 168 species of hoverflies (Table S1 in

Appendix S1 in Supporting Information). From a total of

1820 grid cells (5 9 5 km each) in the Netherlands, 914 had

records for bees in TP1, 894 for butterflies and 1094 for

hoverflies. In TP2, bees were present in 972 grid cells, butter-

flies in 1484 and hoverflies in 1376. In TP3, bees were sam-

pled in 1346 grid cells, butterflies in 1655 and hoverflies in

1592 (see Fig. S1 in Appendix S1 for the spatial distribution

of the sampled grid cells across time).

Climatic data

We obtained climate data for the Netherlands on maximum

and minimum values of temperature and average values of

temperature and precipitation from the project ‘ClimateEU:

historical and projected climate data for Europe’ (Wang

et al., 2012). Climatic data were obtained at the same resolu-

tion as the land use and species distribution data (5 9 5 km

grid cells) and aggregated as an average for each of the three

time periods. These data were used to calculate the 19 biocli-

matic variables described in Hijmans et al. (2005). The bio-

climatic variables represent annual trends in climatic

conditions, seasonality and climate extremes. We only

included variables with Pearson’s correlation coefficients ≤ |
0.65| (Figs S2–S4 in Appendix S1), a threshold well below

the one which is estimated to start distorting model predic-

tions (Dormann et al., 2013). The choice of which variable

would be excluded from the analyses was done by taking

into consideration which variables are known to determine

most strongly the distribution of insects, e.g. those that cap-

ture extreme conditions during the year (see Table 1 for

selected variables). These variables may have important

impacts on the distribution and persistence of pollinators

(e.g. Rasmont et al., 2015).

Land-use data

Land-use data were obtained from the geo-information

department of Wageningen University (www.wageningenur.

nl) with an original resolution of 25 9 25 m pixels. The

land-use map for the oldest time period (TP1) is based on

topographic cartography and the newer maps (TP2–TP3) are
based on remote sensing imagery, all of them with high

land-use classification accuracy ranging from 85% to 98%

(Knol et al., 2004; Hazeu et al., 2010). The years of the land-

use maps represent the central points in time for each of the

time periods for which the species data were obtained: 1960

(representing TP1, see above), 1980 (TP2) and 2008 (TP3).

As land-use data from more recent time periods had more

detailed information on land-use classes than data from

older time periods, the land-use maps were reclassified to

derive eight consistent and representative land-use types:

agriculture, grassland, forest, moors/peat, sandy soils,

swamps, urban and water. Based on these reclassified land-

use maps, we calculated a total of 12 land-use metrics for

each 5 9 5 km grid cell and for each time period (Table 1).

These land-use metrics can be important in determining the

distribution of pollinators because they represent limiting

factors related to feeding and nesting resources or to
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movement between suitable habitat types (see Aguirre-

Guti�errez et al., 2015). The calculated metrics characterize

two major aspects of landscape and habitat structure

(Tscharntke et al., 2012): landscape composition (nine met-

rics) and habitat fragmentation (two metrics) (see below).

For landscape composition, the nine metrics reflected the

percentage of each land-use type per grid cell (eight metrics)

as well as the total number of land-use classes per grid cell

(one metric). The latter was included as a proxy of spatial

heterogeneity, which can influence the composition and

turnover of species assemblages (Tscharntke et al., 2012).

Habitat fragmentation was represented by two metrics: the

average area of suitable habitat patches and total edge

density. Following the evaluation of land-use suitability for

pollinators from Vogiatzakis et al. (2015), we classified the

land-use classes grassland, moors/peat, forest and sandy soils

as ‘suitable habitat’, and agriculture, urban, water and

swamps as ‘non-suitable habitat’. Sandy soils were classified

as suitable because of the natural variation in floral resources

that they offer. Agriculture was considered not suitable

because in the Netherlands it mostly refers to highly intensi-

fied monocultures with high input of fertilizers and

pesticides (see Aguirre-Guti�errez et al., 2015) and temporally

restricted flower resource availability. For total edge density,

we calculated the density of edges between all land-use types

in a grid cell.

All calculations of land-use metrics were carried out in R

(v3.3.1; Development Core Team, http://cran.r-project.org)

with the ‘SDMTools’ package (VanDerWal et al., 2014).

Changes in climatic and land-use conditions over

time

We quantified the changes in abiotic conditions (climate and

land use) that took place in the Netherlands between consec-

utive time periods (TP1–TP2, TP2–TP3). We also analysed

the overall changes that occurred between the first and last

period (TP1–TP3). The changes were calculated as the post-

period minus the pre-period value (e.g. TP3�TP1) for each

of the 18 climatic and land-use variables (Table 1). After

obtaining the change values, we used a Student’s t-test to

investigate if significant changes in climate and land-use con-

ditions between time periods occurred.

Species distribution models

For each bee, butterfly and hoverfly species in each time

period (TP1, TP2 and TP3), we fitted SDMs using the max-

imum entropy modelling approach with Maxent v.3.3.3e

(Phillips et al., 2006). Maxent is a machine learning tech-

nique that has been extensively used for modelling large

datasets of species in areas with varied sets of environmen-

tal conditions, rendering high model accuracy (Elith & Gra-

ham, 2009; Marshall et al., 2015). We selected Maxent

after an in-depth comparison with other algorithms for a

wide range of species with different sample sizes and spatial

distributions of their recording locations in our study area

(for details, see Aguirre-Guti�errez et al., 2013). This com-

parison showed that Maxent was one of the best perform-

ing algorithms with high scores of various evaluation

metrics. We fitted the species distribution models in

Maxent using only linear and quadratic feature types (i.e.

transformations of variables; see Elith et al., 2011) to avoid

model overfitting (Merow et al., 2013). More in-depth

explanations of the Maxent modelling and feature types

can be found in Elith et al. (2011).

As species sampling collections are often geographically

biased (e.g. Merow et al., 2013), this can also generate bias

in the selection of environmental gradients. We accounted

for this by only extracting background information from

those collection localities where species from the same polli-

nator group had been sampled (‘target group approach’,

Mateo et al., 2010). This has been shown to considerably

increase model performance (Mateo et al., 2010). Moreover,

this approach allows to account for possible sampling and

environmental selection biases because the modelled data

contain the same collection bias as the data used for the

background selection (Elith et al., 2011). To account for the

Table 1 Variables used in species distribution models of Dutch

pollinator groups (bees, butterflies and hoverflies) and their
grouping for subsequent analyses in the mixed-effects model.

The variables were divided into four groups related to climate
(temperature and precipitation) and land use (landscape

composition and habitat fragmentation). The climatic variables
were incorporated in the models as yearly averages across the

study period.

Variable specifications

UnitsVariable names

Climate or land-use

variable input in

mixed model as:

Climate variables

Annual precipitation Precipitation mm

Precipitation of driest month Precipitation mm

Precipitation of warmest quarter Precipitation mm

Mean diurnal range [mean of

monthly (maximum

temperature�minimum

temperature)]

Temperature °C

Mean temperature of wettest quarter Temperature °C
Mean temperature of driest quarter Temperature °C
Mean temperature of warmest quarter Temperature °C
Land-use variables

% of each land-use class

(agriculture, grassland, forest,

moors/peat, sandy soils,

swamps, urban and water)

Landscape

composition

%

Number of land-use classes Landscape

composition

Count

Total edge density Habitat

fragmentation

m/ha

Average patch area of

suitable habitat

Habitat

fragmentation

ha
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variation obtained when creating model predictions with dif-

ferent sets of data, we computed SDMs for each species

using 10 repetitions with a bootstrap approach where 80% of

the data were used for training and 20% for model testing.

We used the area under the curve (AUC) value of the recei-

ver-operating characteristic to summarize model perfor-

mance (Hanley & McNeil, 1982). AUC values are often

correlated with other model performance measures such as

the true skill statistic (TSS; Allouche et al., 2006). However,

AUC values are constrained by the fraction of the geographi-

cal area covered by a species and are often low for species

with large sample sizes and increase when the number of

sampling records decreases (Aguirre-Guti�errez et al., 2013;

van Proosdij et al., 2016). As different models are con-

structed with different sets of data, we obtained an ensemble

model for each species to account for between-model vari-

ability and to avoid basing our model selection on AUC val-

ues only. This was done by averaging the suitability scores

across the 10 model repetitions. We used this ensemble

model in subsequent analyses.

To investigate the importance of environmental drivers in

determining species distributions, we obtained three different

evaluation metrics for each predictor variable: the ‘permuta-

tion importance’, ‘percentage contribution’ and the ‘test

gain’ (Phillips, 2006). A preliminary analysis with the ‘test

gain’ metric showed that its importance values were greatly

dependent on the number of occurrence records per species.

This was not the case for the two other evaluation metrics

(permutation importance and percentage contribution).

These two evaluation metrics have further been successfully

applied in other studies (e.g. Gallardo & Aldridge, 2013;

Quillfeldt et al., 2013). We, therefore, excluded the test gain

metric from further analysis. For the permutation impor-

tance, the values of the focal variable are randomly permuted

on the training presence and background data. The model is

then re-evaluated on the permuted data and the change in

the model’s AUC is calculated. Large changes in AUC value

indicate a variable with high importance for the final model.

For the percentage contribution, during each model iteration

Maxent identifies which environmental variables contribute

to the fitted model by detecting the change in model gain

after modifying the coefficient for a single feature (Phillips,

2006). Maxent then assigns the change in model gain to the

environmental variable that the feature depended on to

obtain its final contribution. In the percentage contribution,

the evaluation of the importance value of each variable

depends on the specific path taken by the algorithm to

obtain the optimal model. Hence, similar models may pre-

sent different importance values for the same environmental

variable.

For the final values of the two evaluation metrics (permu-

tation importance and percentage contribution), we averaged

the results of the 10 model repetitions. The obtained impor-

tance values were used to assess if and how the importance

of drivers varied between the three analysed time periods for

each of the three pollinator groups (see below).

Environmental drivers of pollinator distributions

across time

We used a linear mixed-effects model with Gaussian error

structure (Zuur et al., 2009) to test whether the importance

of environmental drivers (i.e. seven climate variables and 11

land-use variables; Table 1) in determining pollinator distri-

butions differed among pollinator groups, time periods and

type of environmental variable (temperature, climate, land-

scape composition and habitat fragmentation, Table 1). The

averaged variable importance values (permutation impor-

tance, percentage contribution) across the four environmen-

tal variables groups outlined above were used as response

variables and the group of environmental variables (precipi-

tation, temperature, landscape composition and habitat frag-

mentation), the pollinator group (bee, butterfly and

hoverfly) and the time period (TP1, TP2 and TP3; included

as a factorial term) as well as their two- and three-way inter-

actions as explanatory variables. We further used the species

identity and the SDM model accuracy (AUC) as random fac-

tors in the mixed-effects model. We then tested for pairwise

significant differences in environmental variable importance

between pollinator groups, time periods and type of environ-

mental variable by performing post hoc pairwise comparison

tests (Tukey’s HSD).

All analyses were performed using the importance values

of both the permutation importance and the percentage con-

tribution. However, given that the percentage contribution

test depends on the particular path that Maxent uses to

obtain the optimal solution (Phillips, 2006) and the permu-

tation importance tests depend only on the final model, we

present the permutation importance results in the main text

and the percentage contribution in the supplementary mate-

rial.

The mixed-effects models were implemented using the

‘lme4’ package (Bates et al., 2015) and the multiple compar-

ison tests using the ‘multcomp’ package (Hothorn et al.,

2008) with the ‘glht’ function in the R platform (v3.3.1;

http://cran.r-project.org).

RESULTS

Spatial distribution of pollinators

We obtained a total of 1780 species distribution models for

bees, 520 for butterflies and 1680 for hoverflies per time per-

iod (i.e. 10 for each species) from which we constructed the

final ensemble model for each species within each pollinator

group (Table S1). The AUC values per pollinator group var-

ied depending on the number of records available for each

species. The average AUC scores for bees were 0.78, 0.76 and

0.75 for TP1, TP2 and TP3, respectively. For butterflies, the

average AUC scores were 0.77, 0.75 and 0.74 and for hover-

flies 0.75, 0.76 and 0.75 for TP1, TP2 and TP3, respectively.

The modelled pollinator distributions showed strong shifts

over time as a function of the climatic and land-use
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conditions (Fig. 1). Some of the 5 9 5 km grid cells lost

more than 30 pollinator species, whereas other grid cells

gained more than 40 species. These dynamics showed sub-

stantial variation among pollinator groups, time periods and

geographical location (Fig. 1).

Changes in climatic and land-use conditions over

time

All climate and land-use variables showed significant changes

between the first (1951–1970) and the last (1998–2014) time

period (Fig. 2; Table S2 in Appendix S1). Changes in the fre-

quency distributions of each variable are provided in Figs

S5–S7 in Appendix S1. While average annual precipitation

per 5 9 5 km grid cell increased between the first and last

time periods (25 mm on average), average values of precipi-

tation of driest month and precipitation of warmest quarter

decreased (Fig. 2). All temperature-related variables showed

increases between 0.2 °C (mean diurnal range) and 3.8 °C
(mean temperature of driest quarter) (Fig. 2). For landscape

composition, average cover of forest, swamps and urban

classes increased, whereas the average coverage of agriculture,

grasslands and moors/peat decreased (Fig. 2). For fragmenta-

tion variables, the average patch area of suitable habitats also

showed significant declines of up to 90 ha per 5 9 5 km

grid cell (Table S2 in Appendix S1). The total amount of

edges also increased significantly, and the number of land-

use classes increased on average by 1.5 from the first to the

last time period (Table S2 in Appendix S1).

Importance of climate and land use in determining

pollinator distributions across time

Analyses based on ‘permutation importance’ values (see

Table 2 for statistical details) and on the ‘percentage contribu-

tion’ values gave qualitatively similar results (Figs 3 and S8;

Tables S3–S8 in Appendix S1). The most important exception

was precipitation for which a slight decrease in importance

over time was detected using the ‘percentage contribution’ for

all three pollinator groups, while ‘permutation importance’

showed a more static pattern (Tables S6–S8 in Appendix S1).

In all time periods, at least one climate-related variable was

important and statistically significant in determining pollina-

tor distributions (Fig. 3a–b; Table S3 in Appendix S1). Tem-

perature (Fig. 3b) tended to have higher importance values

than precipitation (Table S4 in Appendix S1). While the

importance of temperature increased significantly between

TP1 and TP3 for bees and hoverflies, the precipitation
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Figure 1 Maps of net changes in the number of species per pollinator group in 5 9 5 km grid cells between time periods (TP1–TP2:
1951–1970 vs. 1971–1990; TP2–TP3: 1971–1990 vs. 1998–2014; TP1–TP3: 1951–1970 vs. 1998–2014) across the Netherlands. The maps

show the difference between the predicted number of species colonizing a grid cell and the number of species abandoning the same grid
cell. Blue colours represent cells with more species colonizing. Red colours represent more species abandoning the grid cell.
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importance did not significantly increase across time for any

of the three pollinator groups (Fig. 4).

Land-use variables also had a statistically significant effect

in determining pollinator distributions (Fig. 3c–d; Table S3

in Appendix S1). The importance of fragmentation

significantly decreased from TP1 to TP3 for bees, but not for

butterflies and hoverflies (Fig. 4). When comparing climate

with land-use variables, overall, temperature and landscape

composition showed the highest importance for species dis-

tributions across time, being stronger than the importance of

precipitation and fragmentation (Fig. 3). Moreover, while in

TP1 landscape composition was more important than tem-

perature, this trend reverted and temperature became signifi-

cantly more important than landscape composition in the

last time period (TP3) for all three pollinator groups

(Table S4 in Appendix S1).

DISCUSSION

Using spatially explicit historical data (1951–2014) of species

occurrences, climate and land use, we investigated to what

extent the importance of climate and land-use variables as

determinants of Dutch pollinator distributions has changed

over time. The observed shifts in the modelled species distribu-

tions across the last half-century for all three pollinator groups

may be mainly the result of the observed changes in climate

and land-use conditions (Fig. 1). The changes related to tem-

perature and landscape composition emerged as particularly

important (Fig. 2). Our results suggest that, over the studied

time period, precipitation and habitat fragmentation variables

tended to have a constantly high importance in determining

pollinator distributions, but being lower in importance than

temperature and landscape composition. Moreover, our

results suggest that in recent decades, the importance of tem-

perature has significantly increased and that it is currently

more important than landscape composition in determining

the distributions of all three pollinator groups.

Within temperate regions such as the Netherlands, the

recent rapid changes in temperature and precipitation as well

as increases in extreme weather events may have strong

effects on population dynamics of pollinators (Rasmont

et al., 2015). Our results suggest that the range of values of
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Figure 2 Average changes in climatic (a, b) and land-use (c)

conditions per 5 9 5 km grid cell across the Netherlands
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2014) time period. Changes were calculated as the post-period
minus the pre-period value using Student’s t-tests. Significance
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For statistical details, see the Supplementary material

Appendix S1, Table S2. Details on changes in edge density,
number of land-use classes and average patch area of suitable

habitat can be found in the Supplementary material
Appendix S1, Table S2.

Table 2 Statistical details of the mixed-effects model analysing

the environmental variable importance (‘permutation
importance’) across pollinator groups and time periods in the

Netherlands. Further statistical details of post hoc tests are
found in Tables S3–S5. EV: Environmental Variables (climate:

precipitation and temperature; land use: composition and
fragmentation); TP: Time period (TP1: 1951–1970,
TP2: 1971–1990, TP3: 1998–2014); PG: Pollinator group (bees,
butterflies and hoverflies).

Sum of squares

Mean sum of

squares df F P

EV 227.87 75.96 3 200.48 < 0.001

TP 0.64 0.32 2 0.85 0.43

PG 1.29 0.64 2 1.70 0.18

EV:TP 41.66 6.94 6 18.32 < 0.001

EV:PG 22.35 3.73 6 9.83 < 0.001

TP:PG 0.80 0.20 4 0.53 0.72

EV:TP:PG 14.59 1.22 12 3.21 < 0.001
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the included temperature-related variables was similarly suit-

able between the earliest time periods for the pollinator

groups analysed here. However, this has changed in recent

decades where the importance of temperature-related vari-

ables for bee and hoverfly distributions has increased,

becoming comparable in importance to those observed for

butterflies. The lack of a significant change in the importance

of temperature for butterflies could be explained by their

already continuously high importance set by temperature

and their wide within-group differences in habitat prefer-

ences and responses to climate impacts (e.g. Parmesan et al.,

1999; Heikkinen et al., 2010). Meanwhile for some species,

the changes in temperature conditions could had have an

important impact on their distribution for other species such

changes did not represent an important effect, buffering in

this way the changes in the importance of temperature at the

group level (see Fig. 3 wider intervals for butterflies). In con-

trast, the within-group differences for bees and hoverflies

seem to be less accentuated, showing less variation among

species in the importance of temperature as a driver of their

distribution. Previous studies have also reported spatial shifts

in the distribution of these pollinator groups over the study

area (e.g. Aguirre-Guti�errez et al., 2016). The fact that the

importance of climate for butterflies has been consistently

high across the last half-century may be a reflection of the

high susceptibility of butterflies to even small changes in

temperature-related conditions in contrast to the other polli-

nator groups here studied (Heikkinen et al., 2010; Oliver

et al., 2015). Overall, the future importance of climate as a

driver of the distribution of pollinator species may thus

depend on the current climate limits of the study region and

the pollinator group investigated.
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Like in other highly industrialized countries, the major

land-use changes in the Netherlands have occurred in earlier

time periods (c. 1950–1970), whereas they are less pro-

nounced during the last half-century. In fact, we observed

that although the average values of landscape composition

have fluctuated over the period analysed, the range in these

values did not change strongly (Fig. S6). Nevertheless, land

use, particularly landscape composition, remains of high

importance in determining species distributions. This may

reflect the high importance of fine-scale habitat availability

(here represented by landscape composition) for pollinators.

Indeed, climatically suitable areas may not be occupied by

species if habitat conditions remain unsuitable (Oliver et al.,

2012). We found a decrease in the importance of habitat

fragmentation (i.e. habitat patch area and edge density) for

bees, and also to a lesser degree for butterflies and hoverflies

(but small and not significant). This confirms our initial

expectations of slightly lower impacts of land-use changes in

the present time period (TP3) in comparison to initial peri-

ods (e.g. TP1 and TP2; Fig. 3c–d) given that most large-scale

land-use changes have ceased decades ago in the Netherlands

(Harms et al., 1987; European Environment Agency 2010).

As a consequence, the already existing restrictions for the

accessibility of species to feeding and nesting resources in the

surrounding landscape (e.g. Steffan-Dewenter, 2003) have

been kept relatively constant with no major changes in the

importance of fragmentation variables. Moreover, also the

increase in importance of temperature, for bees and hover-

flies, may hinder the already low possible impact of habitat

fragmentation. We expect that in biodiversity-rich countries

with expanding agriculture and economy and large areas

becoming fragmented and changed in terms of their land-

scape composition (see Lambin & Meyfroidt, 2011), future

impacts of land-use changes may be even more pronounced

than in highly industrialized countries where major land-use

changes have often ceased decades ago.

Overall, our results call for SDM applications that capture

how the importance of environmental drivers for species dis-

tributions may change in different areas and over time.

Moreover, these applications should try to capture specific

meta-population processes such as dispersal limitation and

species interactions. Such processes are not yet fully

accounted for in current SDMs (Franklin, 2010; Mart�ınez-

Freir�ıa et al., 2016) and they could also influence the

importance of environmental drivers in defining species dis-

tributions (Ehrl�en & Morris, 2015). Accounting for these

processes and for the possible changes in the importance of

environmental drivers is essential given the predicted future

changes in environmental conditions. This is essential

because species may currently occupy unsuitable sites that

were suitable in the past, representing a landscape suitability

debt (Krauss et al., 2010). However, species may also not yet

fully occupy already suitable habitat areas due to a lack of

dispersal (Schurr et al., 2012). Thus, coupling SDMs with

other more trait-based community-level and mechanistic

approaches may be an appropriate solution for analysing

future species responses to climate and land-use change

(Pacifici et al., 2015).

CONCLUSIONS

Predictions based on species distribution models strongly rely

on the constancy of the relationship between species occur-

rences and environmental conditions. However, how the

importance of environmental variables for species distribu-

tions changes over time has been little studied. Our historical

analysis shows that temperature and landscape composition

have been the most important drivers for pollinator
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Figure 4 Results of mixed-effects model for changes in the
importance of climate and land-use drivers for bee, butterfly

and hoverfly distributions between the first (TP1, 1951–1970)
and the last (TP3, 1998–2014) time period in the Netherlands.

Average changes in the importance (‘permutation importance’)

of climate variables are shown on the left and those of land-use
variables on the right side of the dotted line. Climate variables

include precipitation (annual precipitation, precipitation of
driest month, precipitation of warmest quarter) and temperature

(mean diurnal range, mean temperature of wettest quarter,
mean temperature of driest quarter, mean temperature of

warmest quarter), and land-use variables include landscape
composition (percentage of each land-use class, number of land-

use classes) and habitat fragmentation (total edge density,
average patch area of suitable habitat). The change in

importance is expressed as square-root transformed values based
on the mixed-effects model results from Fig. 2. Significance

level: ***P < 0.001. For statistical details, see Supplementary
material Appendix S1, Tables S3–S5.
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distributions across time. However, our study also reveals

that the importance of temperature has strongly increased in

recent time periods at least for two out of three pollinator

taxa. This suggests that ongoing and future climate change

could continue to increase in importance as a driver of spe-

cies distributions. The (non-)stationarity of climate versus

land-use drivers of species distributions requires further test-

ing, e.g. with historical data for other taxa, other areas such

as tropical and arctic regions, and at different spatial extents

and grain sizes. This would help to deepen our understand-

ing about the generality of our findings and its relevance to

other taxonomic and functional groups and regions.
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