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Species distribution models are the tool of choice for large-scale population monitor-
ing, environmental association studies and predictions of range shifts under future 
environmental conditions. Available data and familiarity of the tools rather than 
the underlying population dynamics often dictate the choice of specific method – 
especially for the case of presence–absence data. Yet, for predictive purposes, the 
relationship between occupancy and abundance embodied in the models should 
reflect the actual population dynamics of the modelled species. To understand the 
relationship of occupancy and abundance in a heterogeneous landscape at the scale 
of local populations, we built a spatio-temporal regression model of populations of 
the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data 
comprised nineteen years of habitat surveys and snapshot data of land use in the 
region. We used variance partitioning to quantify relative contributions of land use, 
habitat quality and metapopulation covariates. The model revealed a consistent and 
positive, but noisy relationship between average occupancy and mean abundance 
in local populations. Patterns of abundance were highly variable across years, with 
large uncorrelated random variation and strong local population stochasticity. In 
contrast, the spatio-temporal random effect, habitat quality, population connectiv-
ity and patch size explained variation in occupancy, vindicating metapopulation 
theory as the basis for modelling occupancy patterns in fragmented landscapes. 
Previous abundance was an important predictor in the occupancy model, which 
points to a spillover of abundance into occupancy dynamics. While occupancy 
models can successfully model large-scale population structure and average occu-
pancy, extinction probability estimates for local populations derived from occu-
pancy-only models are overconfident, as extinction risk is dependent on actual, not 
average, abundance.
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Introduction

Observed declines in insect abundance around the world 
remind us of the importance of understanding changes in 
species’ abundance in addition to looking at range shifts and 
population extinctions (Conrad  et  al. 2006, Shortall  et  al. 
2009, Cameron et al. 2011, Koh et al. 2016, Hallmann et al.  
2017). At the same time, deficiencies in some studies highlight 
the challenges in analyzing and interpreting population dynam-
ics of as diverse and dynamic a group as insects (Georgina et al. 
2015, 2016, Komonen  et  al. 2019, Sánchez-Bayo and 
Wyckhuys 2019, Thomas et al. 2019).

Occupancy and abundance patterns both arise from 
spatio-temporal variation in growth rates and dispersal. 
Notably, ecological theory does not assert that distribution, 
occupancy and abundance respond similarly to variation in 
environmental conditions, as they are different functions of 
those population dynamic processes. Spatio-temporal varia-
tion in the environment leads not only to variation in the 
dispersal and local growth rates, but the relationship between 
them. Especially where density-dependence affects growth 
and dispersal, this could lead to different relationships 
between occupancy, distribution and abundance. While 
ecological studies demonstrate that these population mea-
sures are often correlated (Gaston et al. 2000, Cowley et al. 
2001), this does not imply that their relationship is fixed 
across different contexts and taxa (Holt  et  al. 2002) or 
driven by the same processes. Suggested mechanisms that 
give rise to different, mostly positive, occupancy–abundance 
relationships both within and among species include for 
example sampling processes, metapopulation dynamics, spe-
cies-specific environmental responses and spatial variation in 
habitat quality (Hanski 1991, Hanski and Gyllenberg 1997, 
Freckleton et al. 2005, 2006).

In applied spatial ecology, the availability of methods and 
data often limit us to analyses not derived from assumptions 
about species’ demography. Consequentially, these methods 
often introduce implicit relationships between occupancy and 
abundance into our analyses. Species distributions and occu-
pancy models usually use only occupancy data and model 
patterns instead of demographic processes (Pearce and Ferrier 
2001, Sileshi 2007, Keith  et  al. 2008, Duff  et  al. 2012). 
Although species distribution models built on abundance 
data give a more detailed view of the relationship between 
population density and the environment (Kallasvuo  et  al. 
2017), they still implicitly assume a simple relationship 
between patterns of occupancy and abundance (Sileshi et al. 
2009, Dallas and Hastings 2018). Models of abundance con-
ditioned on covariates that use for example a Poisson or nega-
tive binomial distribution yield occupancy probabilities as a 
simple function of the distributional form (Holt et al. 2002). 
In environments where dispersal is not a limiting factor and 
there is no strong spatial correlation in habitat quality, such 
simple relationships can be reasonable approximations, but in 
fragmented landscapes where occupancy is a function of both 
colonizations and local population dynamics, we should not 

let this assumption stand untested. Even models grounded 
directly in population ecology – such as the stochastic patch 
occupancy models of metapopulation ecology – make simpli-
fications that limit the ability of models to distinguish how 
environmental variation or interspecific interactions can lead 
to diverging patterns of occupancy and abundance (Keeling 
2002, Etienne  et  al. 2004). These models, which are fit to 
records of presence and absence of the study species, often 
assume a simple relationship between carrying capacity and 
patch characteristic, such as area and habitat quality, and use 
this relationship as the basis of extinction probabilities. More 
principled patch occupancy models derive a surrogate of 
population size from an underlying individual based model, 
but ignore stochastic variation in that size (Ovaskainen and 
Hanski 2004b). In both cases, if the model includes envi-
ronmental effects on occupancy they also implicitly affect 
abundance in a predetermined fashion, unless the model 
distinguishes between environmental effects on dispersal and 
local reproduction (Harrison et al. 2011). Such deficiencies 
are most critical when predicting under novel environmental 
conditions and outside a species’ current range. An extreme 
example are bioclimatic envelope models lacking any popula-
tion dynamic component that are used to predict range shifts 
under climate change (Araújo et al. 2005, Lewthwaite et al. 
2018), in spite of the availability dynamic alternatives 
(Keith et al. 2008, Buckley et al. 2010, Leroux et al. 2013).

Here, we apply joint occupancy–abundance modelling 
to the long-term demographic survey of the Glanville fritil-
lary in the Åland Islands (Ojanen et al. 2013). We assess how 
occupancy and abundance respond to environmental hetero-
geneity in this large metapopulation. The data combine reli-
able demographic surveys of the number of larval groups in 
local populations and details on habitat quality with a com-
paratively large spatial extent suitable for understanding the 
relationship between occupancy and abundance in a heteroge-
neous landscape. We study how the spatial structure of habi-
tat, population dynamics, habitat quality and the composition 
of the landscape contribute to occupancy and abundance and 
how these contributions differ at the level of local populations 
in the metapopulation. The choice of study system governs 
our expectations. Given the host–plant specificity of the but-
terfly’s larval stages and the classic metapopulation structure of 
the populations, we expect to see large effects of variation in 
habitat quality, patch size and the connectivity of the habitat. 
We expect less pronounced effects of land use as effects of land 
use are mediated by direct measures of habitat quality. Still, 
land use is expected to have a more direct role through effects 
on dispersal (DiLeo et al. 2018). Comparing occupancy and 
abundance, we expect that occupancy be largely determined 
by landscape structure, that is, the distribution of habitat and 
land use, while local variation in the habitat, especially in terms 
of area and quality would be more important for abundance.

We use a hurdle model with a spatio-temporal random 
effect to account for potentially confounding unobserved 
variation and spatio-temporal correlation between our obser-
vations. The model captures some elements of population 
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dynamics and is simple enough to fit large data sets. The 
random effects in the model help quantify how unexplained 
variation is structured and reflect a lower bound on the 
uncertainty that our model would carry over when extrapo-
lating into different environments. As the study is observa-
tional, we cannot interpret covariate effects causally. Instead, 
we use variance partitioning to quantify which factors matter 
in our study system and how much we can potentially expect 
to explain in other systems. We batch our covariates into 
classes that group together related covariates in terms of what 
they represent and where they are measured. This allows us to 
draw more general conclusions than from individual covari-
ates whose effects are more likely species and site dependent.

Material and methods

Study system

We study the metapopulations of the Glanville fritillary but-
terfly (Melitaea cinxia Linnaeus 1758, family Nymphalidae) 
in the Åland Islands in the Baltic Sea. At this northern range 
margin the butterfly has a single generation per year with 
adults emerging in late May or early June and the flight sea-
son lasting for approximately one month (Hanski et al. 1994, 
Nieminen  et  al. 2004, Kahilainen  et  al. 2018). The larvae 
live in family groups and overwinter in conspicuous tent-like 
silken nests that they build late in the summer or in early 
fall (Hanski et al. 1995, Kuussaari and Singer 2017). Though 
endangered in Finland, the species is not under strict protec-
tion (Hyvärinen et al. 2019).

In the Åland Islands, the butterfly inhabits networks of dry 
meadows, pastures, roadsides and rocky outcrops where one or 
both of its larval host plants, ribwort plantain Plantago lanceo-
lata and spiked speedwell Veronica spicata, grow (Hanski et al. 
1994). The study area, surveyed annually since the 1993, cov-
ers about 50 × 70 km2 with over four thousand potential habi-
tat patches known to date. The butterfly occupies annually 
between 1 and 30 percent of the habitat patches with annual 
turnover usually comprising between 50 and 200 extinctions 
and colonizations (Hanski et al. 1995, Ojanen et al. 2013). 
The system has become a model for study of metapopulation 
dynamics (Hanski et al. 1995, Hanski 1999, Nieminen et al. 
2004, Ovaskainen and Saastamoinen 2018).

Every September surveyors visit most of the habitat 
patches to measure habitat quality and count the number of 
the butterfly’s larval nests (Hanski et al. 1995, Ojanen et al. 
2013). The probability of detecting at least one nest in an 
occupied habitat patch is 70–90 percent (Hanski et al. 1995, 
2017, Nieminen et al. 2004, Ojanen et al. 2013). As inten-
sive resurveys for undiscovered habitat in 1998 and 1999 
found over two thousand new habitat patches (Ojanen et al. 
2013), we restrict our study to the more complete data col-
lected since year 2000. The data comprise 62 659 patch 
observations spanning a 19-yr period. The records include 
9780 observations of occupied patches.

Land use data

We obtained land use data from the National Land Survey of 
Finland’s (NLS) Topographic database (acquired 08/2017). 
They represent a recent snapshot of the landscape state. We 
restricted ourselves to land use and land cover data repre-
sented by the categories Terrain/1, Terrain/2 and Road net-
work in the Topographic database. We simplified the land 
use classification to reduce the number of land use covari-
ates. The resulting data include agricultural fields, horticul-
ture, meadows, marshes and bogs, open water bodies, built 
and recreational areas, and roads (Supplementary material 
Appendix 1 Table A1). Over half of the agricultural fields in 
the region produce hay for ensilage and pasture. Other major 
field crops include various cereals, while apple orchards dom-
inate horticultural land use. Additionally, we include data on 
forested areas from the 2011 Multi-source National Forest 
Inventory provided by the National Resources Inst. Finland. 
We excluded open bogs from our forest class as they are either 
treeless or only sparsely forested (Mäkisara et al. 2016).

Covariate categorization

To study how different aspects of the landscape affect occu-
pancy and abundance of the butterfly, we group our covari-
ates into four categories: population (P), metapopulation 
(M), habitat quality (H) and land use (L). We also divide our 
covariates in terms of their spatial scope, that is, whether they 
are measurements from within the habitat patch or from the 
surrounding landscape (Fig. 1).

The local population covariates (P) include population 
size (number of larval nests) and occupancy status in the 
previous year. The metapopulation covariates (M), habitat 
patch area and population connectivity, are considered the 
primary predictors of occupancy in metapopulation ecology 
(Hanski 1999). We use a model based connectivity measure, 
which comprises the individual immigrant contributions 
from all other patches based on their spatial configuration, 
area and population size in the previous year (Hanski 1994, 
Supplementary material Appendix 2).

The habitat quality covariates (H) include an ordinal mea-
sure of the abundance of either of the host plant species, a 
binary indicator for the simultaneous presence of both host 
plants, the proportion of desiccated host plants, the propor-
tion of grazed vegetation in the habitat patch, and an indica-
tion of the presence of powdery mildew Podosphera plantaginis 
on the host plant Plantago lanceolata (Ojanen  et  al 2013). 
We simplified the habitat quality measures for the analyses 
(Supplementary material Appendix 3).

The land use covariates (L) include three measures for 
each land use class: 1) proportion in the habitat patch, 2) 
proportion outside the patch edge in a 10-m buffer and 3) 
distance weighed proportion in a large buffer around the 
habitat patches (Aue et al. 2012, Chandler and Hepinstall-
Cymerman 2016, Miguet et al. 2017). Land use within the 
patch can capture aspects of habitat quality not recorded 
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during the surveys, while the land use at the edge of the 
patch can have direct effects on habitat microclimate, for 
example through shading, and also impede or facilitate 
immigration and emigration of adult butterflies. Land use 
in the wider surrounding area can capture effects of land-
scape composition on long-distance dispersal or larger 
microclimatic conditions. The scales of the environmental 
effects may vary among the covariates (Martin and Fahrig 
2012), but given the large number of covariates included in 
our study we opted for simplicity and used the same fixed 
parameters for the distance weighing function for all land 
use classes (Supplementary material Appendix 4). Of the 
resulting landscape composition measures, originally three 
per land-use class, we kept only those that occurred in at 
least one percent of all observations.

Model

We used a hurdle model to separate the effect of envi-
ronmental variation on butterfly occupancy and abun-
dance (Welsh et  al. 1996). Due to the fast turnover in the 

metapopulation and variation in habitat patch isolation, 
absences are not necessarily indicators of unsuitable habitat. 
Thus, we exploit the structure of the hurdle model to distin-
guish processes that govern occupancy and abundance. The 
occupancy component mimics the colonization–extinction 
dynamics of the metapopulation while the abundance com-
ponent should reflect the effects of site characteristics on local 
reproductive performance.

We apply a generalized linear modelling approach to 
model occupancy and abundance as a linear combina-
tion of covariates, independent yearly and per-patch ran-
dom effects, and a spatiotemporal random effect. We 
model abundance y with a negative binomial distribution 
and occupancy with a Bernoulli distribution. The model  
is then
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Figure 1. Posterior means of the standardized effect sizes of the occupancy and abundance model’s covariates. The boxes show the 80% 
credible intervals and the whiskers extend to the 95% credible interval. Blue depicts effects that pertain to the habitat patch and orange 
depicts landscape-based effects. The label and background colours depict the covariate classes.
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where

logit θ βi i o o o i o i iX a i u t z s t( ) = + ( ) + ( ) + ( ), 	 (2)

log λ βi i a a a i a i iX a i u t z s t( ) = + ( ) + ( ) + ( ), 	 (3)

and yi is the abundance measured as the observed nest 
count, θ is the probability of presence, λ the expected but-
terfly abundance in an occupied patch, X is a matrix with 
covariates in its columns, βo and βa are mutually independent 
column vectors with covariate weights, ao and aa are mutu-
ally independent per-patch iid random effects, uo and ua are 
mutually independent yearly iid random effects, zo and za  
are mutually independent spatio-temporal random effects,  
s is a vector of observation coordinates, t is a vector of obser-
vation years, n is the overdispersion parameter. The random 
effects represent unmeasured variation at the level of patches 
(a), unmeasured large-scale variability between the years (u) 
and unmeasured spatio-temporally correlated variation (z); 
the overdispersion parameter n can also be interpreted as a  
per-observation random effect representing, for example, 
unmeasured environmental stochasticity (Lindén and 
Mäntyniemi 2011). The use of the above hurdle model, 
where the likelihood terms for zero and greater than zero 
observations are separable, is justified by the high rate of 
detection in the survey, which ensures a low proportion 
of false absences in the data and minimizes the effects of  
potential variation in detection rates (Bried and Pellet 2012).

We gave independent  ( , )0 10  priors for all the linear 
weights except for the intercept, which had a  ( , )0 100  
prior. All covariates were normalized to have standard devia-
tions of one and a mean of zero. Before normalization, we 
log transformed patch area and connectivity and log(x + 1) 
transformed host plant abundance (vegetation), and previous 
population size. We implemented the model using R-INLA 
(ver. 18.07.12, Supplementary material Appendix 5) which 
provides efficient approximate computation for a wide class 
of latent Gaussian models (Rue et al. 2009, Lindgren et al. 
2011, Lindgren and Rue 2015).

Partitioning of variation

To quantify the contribution of different measures of land-
scape heterogeneity to butterfly occupancy and abundance, 
we examine how much the covariates in each covariate cat-
egory (P, M, H and L) and the random effects contribute to 
the total posterior variation in the linear predictors logit(θ) 
and log(λ). This corresponds to the ‘finite-population’ view 
of Bayesian analysis of variance (Gelman  et  al. 2014). In 
the spatio-temporal modelling context, Yuan  et  al. (2017) 
used this method for exploratory model checking, while 
Ovaskainen  et  al. (2017) applied it in hierarchical mod-
els in community ecology. As our study system consists of 
a discrete set of populations, we calculate the measure over 

all observation units (Supplementary material Appendix 6).  
To understand how the different components of the model 
contribute to explaining variation within and among patches, 
we also partition the observations by patch and apply the law 
of total (co)variance to calculate within- and among-patch 
variances for all components over all patches (Table 2).

Results

Covariate effects

Overall, the population, metapopulation and habitat quality  
covariates had clear effects on occupancy and abundance 
(Fig. 1, Supplementary material Appendix 6 Table A2). Of 
the population covariates, the size of the population in the 
previous year increased occupancy probabilities; previous 
occupancy status alone had no discernible effect. The odds  
of occupancy when comparing a patch with ten larval nests to 
a patch with only one nest in the previous year are over two 
and half times higher (Fig. 2). While both size and occupancy 
of the population in the previous year increased abundance, 
population size in the previous year had clearly a stronger 
effect and together with habitat patch area it was the covariate 
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with the strongest effect. Habitat patch area had a larger effect 
than population connectivity for both occupancy and abun-
dance (Fig. 1). Of the habitat quality covariates, host plant 
abundance (vegetation in Fig. 1) had the strongest effect, and 
for the occupancy model, it was overall the most important 
covariate. Simultaneous presence of both host plant species 
(both hosts in Fig. 1) was additionally associated with higher 
abundance and probability of occupancy. A higher propor-
tion of dry or desiccated host plant vegetation, as assessed 
during the fall survey, was associated with slightly higher 
occupancy probabilities. Similarly, the presence of a pow-
dery mildew infection on the host plant Plantago lanceolata 
increased occupancy and abundance slightly. Intense grazing 
of habitat predicted a drastically reduced occupancy proba-
bility and slightly lower abundance. In contrast, the presence 
of grazing itself slightly increased occupancy and abundance.

Land use covariates had mostly minor effects, except for 
the effects on occupancy of land use outside of the habitat 
patches (Fig. 1). Forests and agricultural land in the sur-
rounding areas, and agricultural land and rocky areas along 
the edges of the habitat patches increased patch occupancy, 
while surrounding built-up areas decreased it. Paved roads 
increased occupancy probabilities generally as did unpaved 
roads in the surrounding areas. The butterfly abundances 
were also slightly higher in patches surrounded by forests. 
Agricultural land use within the patch increased abundance, 
while its presence in the surroundings decreased it. Unpaved 
roads decreased abundance when they passed through the 
actual habitat patch.

Variation explained

Most variation in occupancy patterns was explained by the 
yearly iid and spatio-temporal random effects (posterior 
mean 0.40, Table 1). In contrast, the patch level random 
effect had only a minor role. Overall, processes related 
to the landscape were more important than variation of 
measures pertaining only to the habitat patches them-
selves (0.54 versus 0.28). Yet, habitat quality was the most 

important covariate class in terms of variation explained 
(0.14). Metapopulation covariates, land use outside of the 
patches, and population covariates each explained only 
a few percent of variation, while land use within habitat 
patches had no discernible effect. The spatio-temporal ran-
dom effect correlated with population and metapopulation 
covariates (posterior means 0.33 and 0.35, Supplementary 
material Appendix 6 Table A3) and the population, meta-
population and habitat quality covariates correlated with 
each other (0.26–0.40). The spatio-temporal random field 
correlated strongly with connectivity and the population 
covariates (posterior mean correlations 0.64 and 0.33, 
Supplementary material Appendix 8 Table A3, Fig. A2), 
which had a particularly strong effect on the results: Both 
explained only two percent of variation in occupancy, but 
of all the covariates had the highest correlations with the 
linear predictor logit(θ) (squared mean posterior correla-
tion 0.36, Supplementary material Appendix 8 Table A5, 
Fig. A2) suggesting strong confounding between connec-
tivity, the population covariates and the spatio-temporal 
random effect in the occupancy model.

Random effects related to the whole landscape accounted 
for the largest proportion of the variation in abundance 
(posterior mean 0.41, Table 1), but in contrast to occu-
pancy also patch level random variation was important 
(0.11). In general, the contributions of patch level and 
landscape wide processes were almost equal in explaining 
variation in abundance (0.40 and 0.46). Both population 
covariates and metapopulation covariates explained a large 
proportion of variation (0.13 and 0.12). Habitat quality 
was less important than for occupancy, and just as land 
use in the landscape, it explained five percent of variation 
in abundance. The patch and yearly random effects corre-
lated with population covariates (posterior means 0.20 and 
−0.22, Supplementary material Appendix 6 Table A4), but 
the spatio-temporal random effect had only low correlations 
with the other components. The population, metapopula-
tion and habitat quality covariates correlated with each 
other (posterior means 0.20–0.46).

Table 1. Proportion of variation in the linear predictors (eq. 2–3) explained by their components. The 95% credible intervals are below the 
mean value in each cell. The totals for each model sum to one when accounting for covariance between the components.

Occupancy Abundance
Patch Landscape Patch Landscape

Random effects 0.03
0.02–0.04

0.40
0.36–0.43

0.11
0.09–0.13

0.41
0.38–0.44

Population covariates 0.02
0.02–0.02

0.13
0.11–0.16

Metapopulation covariates 0.03
0.02–0.04

0.02
0.01–0.03

0.09
0.07–0.12

0.03
0.01–0.05

Habitat quality covariates 0.14
0.13–0.15

0.05
0.04–0.06

Land use covariates 0
0–0

0.03
0.02–0.03

0.01
0–0.02

0.05
0.03–0.07

Total 0.28
0.26–0.30

0.54
0.52–0.57

0.40
0.37–0.44

0.46
0.43–0.48
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Differences between occupancy and abundance

Metapopulation covariates were important for explaining 
differences among patches, while population and habitat 
quality covariates contributed almost equally to within- and 
among-patch variation (Table 2). For within-patch variation 
in occupancy, the yearly and spatio-temporal random effects 
and habitat quality explained most variation, while the yearly 
and spatio-temporal random effects and population covari-
ates explained most within-patch variation in abundance.

Variation in the occupancy and abundance models was 
higher among patches compared to within patches (poste-
rior means 0.67 and 0.62, Table 2). The spatio-temporal 
random effect explained more variation in occupancy among 
patches than within (0.20 and 0.10), while for abundance 
their relationship was reversed (0.08 and 0.17). This sug-
gests that the random effects explain long-term differences in 
occupancy over the study region while for abundance there 
is more yearly varying spatially structured stochasticity. We 
see the same relationship from the model hyperparameters: 
the spatio-temporal random field for the occupancy model 
had higher temporal autocorrelation (posterior mean 0.92, 
Supplementary material Appendix 9 Table A6) than the 
model for abundance (0.38) and correlation distance for 
occupancy (6.1 km) was longer than for abundance (4.4 km). 
The temporal means, trend and variance of the random 
effects differed spatially between the occupancy and abun-
dance models (Fig. 3). The occupancy model’s spatio-tem-
poral random effect had clear and stable structure, whose 
mean clearly differentiated areas where the butterfly occurs 
from unoccupied regions of the landscape. For the abun-
dance model, the temporal variation in the spatio-temporal 
random effect swamped any permanent large-scale structure 
(Supplementary material Appendix 10 Fig. A4).

In general, unexplained and random variability both 
within and especially among patches, was higher for the 

abundance model (Table 1). The standard deviations of the 
patch, yearly and spatio-temporal random effects differed 
less from each other in the abundance model than in the 
occupancy model, where the spatio-temporal random effect 
clearly had the highest variance (Supplementary material 
Appendix 9 Table A6). Together with the lower temporal and 
spatial autocorrelation, the variance parameters also imply a 
much higher annual variation of the random effects for the 
abundance model.

The relationship between log abundance and log odds of 
occupancy within patches was linear, suggesting an exponen-
tial relationship between the odds of occupancy and abun-
dance within patches (Fig. 4). The relationship would deviate 
from linearity if the effects of the covariates differed strongly 
between occupancy and abundance or the distribution of 
covariates in unoccupied habitat was very different.

Discussion

Our results demonstrate that while similar facets of environ-
mental heterogeneity affect both occupancy and abundance, 
their relative roles differ in the Glanville fritillary metapopula-
tion. With the notable exception of the strong role of habi-
tat quality, landscape properties affect occupancy more than 
habitat patch characteristics, while abundance is determined 
both by local and landscape properties, with habitat quality 
one local factor among many.

We find very little unstructured variation among patches 
in the occupancy model: the model covariates and the spatio-
temporal random effect explain most variation. Given the 
strong correlation of the spatio-temporal random field with 
our connectivity measure and population covariates, we can 
say that previous year’s population size, patch area, habitat 
quality and connectivity are the main drivers of occupancy, 
as expected in a classic metapopulation (Hanski 1999).  

Table 2. Proportion of variation within and between patches as explained by the components of the linear predictors (2–3). The 95% credible 
intervals are below the mean value in each cell. The totals on the final row give posterior estimates of the variation due to within and among 
patch variability in occupancy and abundance.

Occupancy Abundance
Within Among Within Among

Random effect: patch 0.03
0.02–0.04

0.11
0.09–0.13

Random effect: year 0.10
0.08–0.12

0.00
0.00–0.00

0.13
0.11–0.16

0.03
0.02–0.03

Random effect: spatial 0.10
0.09–0.12

0.20
0.17–0.23

0.17
0.15–0.19

0.08
0.06–0.09

Population covariates 0.01
0.01–0.01

0.01
0.01–0.01

0.08
0.06–0.10

0.05
0.04–0.07

Metapopulation covariates 0.01
0.00–0.01

0.05
0.04–0.06

0.01
0.01–0.02

0.13
0.11–0.16

Habitat quality covariates 0.07
0.07–0.08

0.07
0.06–0.07

0.02
0.02–0.03

0.03
0.02–0.04

Land use covariates 0.03
0.02–0.03

0.04
0.03–0.06

Total 0.33
0.31–0.35

0.67
0.65–0.69

0.38
0.36–0.40

0.62
0.60–0.64
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In the case of abundance, the strong role of the random effects 
in within-patch variation suggests that the covariates used do 
not capture the full range of variation in local abundance.

That unexplained variation can come in many guises such 
as unmeasured variation in landscape structure and habitat, 
or unaccounted interactions of the covariates with population 
dynamic processes such as when landscape structure affects 
dispersal (Conradt et al. 2000, Luoto et al. 2006, Stasek et al. 
2008, DiLeo  et  al. 2018). Weather is another important 
missing factor, which affects butterfly population dynam-
ics during most life stages (Heinrich 1993, Hellmann et al. 
2004, Kuussaari  et  al. 2004) – also in the Åland Islands 
(Nieminen et al. 2004, Kahilainen et al. 2018). Interestingly, 
the spatio-temporal random field in the occupancy model is 
rather stable across the years, suggesting that the effects of 
climatic variation differ between occupancy and abundance. 
The effects on occupancy are limited to large-scale annual 

differences with limited spatial variation, while for abundance 
the effects are more variable and also more local due to, for 
example, behavioural interactions with the local topography 
and microclimate (Eilers  et  al. 2013, Lawson  et  al. 2014).  
Any effects on abundance will also have indirect impacts on 
occupancy: for example, if summer drought reduces the quantity 
and quality of host plant available for larvae, the consequent 
reduction in abundance would also increase extinction risk in 
the next year (Salgado and Saastamoinen 2019).

Within-population occupancy–abundance 
relationships

In systems with sufficient turnover, such as classic metapopu-
lations, occupancy–abundance relationships can be observed 
already at the level of local populations. In our system the 
qualitatively similar responses of occupancy and abundance 

Figure 3. Summary of the spatio-temporal random fields for occupancy (a, c) and abundance (b, d). Panels (a), (b) show the mean of the 
spatial field over the years, panels (c–d) show the mean of annual changes of the spatial field over the years. We standardized the occupancy 
and abundance spatio-temporal random fields to unit variance before calculating the means and trends. Thus, the differences between 
occupancy and abundance are due to differences in the structure of the spatial field and not their differing magnitudes. Coastline data 
National Land Survey of Finland’s (NLS) topographic database (acquired 08/2017). The grid lines in panel (b) show the position of the 
Åland Islands in the World Geodetic Coordinate System (WGS-84).
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to environmental heterogeneity result in a noisy and non-lin-
ear, yet consistent, relationship between average occupancy 
and abundance within patches. In general, patches that have 
higher average occupancy have higher average abundance. 
This suggests that average occupancy can be a reasonable sur-
rogate for mean abundance, which has also been shown in 
studies of other butterflies and species (Oliver  et  al. 2012, 
Gutiérrez  et  al. 2013). While it is harder to envision how 
negative within-population occupancy–abundance relation-
ships would arise, lack of any clear relationship would sug-
gest that the time series is too short compared to the lifespan 
of the study species or point to a drastic decline of habitat 
quality, such that overall average occupancy decreases and is 
independent of abundance before the decline.

A positive within-population occupancy–abundance 
relationship could follow from variation in growth rates or 
dispersal, mechanisms which are shown to generate posi-
tive within- and among-species occupancy–abundance rela-
tionships (Hanski and Gyllenberg 1993, Holt  et  al. 1997). 
Habitat patches with lower average growth rates have both 
smaller populations on average and go extinct more often; 
where immigration plays a strong role, low-quality or iso-
lated habitat harbours occasional sink populations, while 
well connected habitat has inflated population sizes and high 
recolonization rates. In a wider context, the within-population 
relationship would then lead to a positive within-species  
occupancy–abundance relationship if mean growth rates or 
connectivity vary among different landscapes.

Effect of abundance on occupancy

While occupancy is more predictable – in terms of varia-
tion explained by covariates – the large effect size of popula-
tion size in the previous year suggests that the stochasticity 

of abundance flows over into the occupancy model. While 
patch area and previous occupancy as surrogates for popula-
tion size can suffice for predicting average occupancy – and 
thus average abundance – predictions of yearly changes in 
occupancy ignorant of population sizes would be biased 
towards the average case. Our result align with that of 
Oliver et al. (2012), who found that even when occupancy 
models predict mean population densities they do not cap-
ture long-term stability very well. Generally, this calls for 
caution when using occupancy as a surrogate for abun-
dance in some contexts. Occupancy as means to discover 
environmental associations and to rank habitat in terms of 
quality is not very sensitive to assumptions about under-
lying relationship to abundance (Pearce and Ferrier 2001, 
Harrison  et  al. 2011). But trying to predict extinction 
dynamics of individual populations and estimate actual, 
not average, abundances using the same models could lead 
to biased estimates and higher uncertainty (Harrison et al. 
2011, Bried and Pellet 2012). Thus, in the case of stochastic 
patch occupancy models, we should question these assump-
tions based on the intended use of the model as well as their 
biological plausibility (Hanski 1999, Gaggiotti and Hanski 
2004, Ovaskainen and Hanski 2004a, b).

Habitat quality and occupancy

Habitat quality, especially host plant abundance, has a strong 
role in determining occupancy: a quarter of all observations 
represent the lowest host plant abundance, but of occupied 
habitat only five percent fall into the lowest abundance class. 
This suggests a habitat quality threshold below which it is 
unlikely that patches become or stay occupied. Some of the 
possible explanations for such a threshold are that, the poten-
tial habitat patches are of such low quality that the butterfly 
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Figure 4. Observed and predicted within-patch occupancy–abundance relationships. The observed values are calculated for all patches 
occupied at least once, and their mean abundance is calculated only over the occupied years. The correlation between observed log odds and 
log abundance is 0.69 (n = 2022). The predicted values are patch means of the linear predictors calculated over all the observations  
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can only rarely, if ever, complete the larval stages of its life-
cycle with the resources available, or that dispersing females 
are much less likely to find or choose low quality habitat, 
due to lack of suitable resources or absence of conspecifics 
(Kuussaari et al. 1996). A similarly stark contrast was found in 
relationship between host plant abundance and the presence 
of the Clouded Apollo (Luoto  et  al. 2001) and Oberthür’s 
grizzled skipper (Fourcade and Öckinger 2017). In terms of 
notable land use effects, roads and surrounding agricultural 
lands increased occupancy, possibly due to increased connec-
tivity between patches (DiLeo et al. 2018). In contrast, sur-
rounding agriculture decreased abundance, possibly due to 
higher emigration rates (Kuussaari et al. 1996). These results 
reaffirm the need to account for population dynamics in 
attempting to study habitat quality and it’s interaction with 
landscape context, both in terms of understanding the direct 
relationship between population density and habitat quality, 
as well as population density and emigration and immigra-
tion rates (Van Horne 1983).

Analysis of variance

Our results underline that effect sizes and analysis of variance 
are not substitutes for each other, but complementary tools 
in observational studies, and must be interpreted in light of 
the ecology of the study system and the distribution and spa-
tial structure of the covariates. For example, despite having 
a large effect size, having both host species present contrib-
utes little to overall variation, as within our study system in 
the Åland Islands one of the host plants, Veronica spicata, is 
not as widely distributed as the other, Plantago lanceolata; 
both are simultaneously present in only 16 percent of obser-
vations. Similarly, land use covariates, which show strong 
effects on occupancy, but due to a rather homogeneous land-
scape in areas where suitable habitat is found, explain very 
little variation in population dynamics. This would explain 
why Moilanen and Hanski (1998) did not find any model 
improvement from adding landscape composition to their 
stochastic patch occupancy model of the same system.

Conclusions

Separating patterns of occupancy and abundance is the first 
step in determining the relationship between occupancy and 
abundance and how it responds to environmental heteroge-
neity. Given sufficiently reliable data, in terms of detection 
rate, the hurdle model provides a good basis for a statistical 
approach to this problem (Welsh et al. 1996). We emphasize 
the use of the hurdle model as a tool for meaningfully separat-
ing drivers of occupancy and abundance patterns, instead of 
concentrating on the so called zero inflation of the distribution 
of count data. We also advocate the use of spatio-temporal ran-
dom effects to partially compensate for the effects of suitable, 
but unoccupied, habitat on covariate coefficient estimates, in 
the presence of dispersal and potential unmeasured covariates.

In our system, conditional on occupancy, unexplained 
variation in abundance has no strong spatial structure, while 

the unexplained spatio-temporal variance in occupancy is 
rather stable when excluding noise due to variation in abun-
dance. This suggests that in some cases spatial structure esti-
mated in abundance-only species distribution models would 
lead to a compromise mixing two different patterns that arise 
from partially different processes.

A positive relationship between average occupancy and 
abundance within local populations can arise from the rela-
tionship between local abundance and extinction rate, or 
immigration and the extinction and colonization rates. The 
relationship we observed is noisy and non-linear, and sug-
gests that in spite of the consistency of the relationships, 
occupancy is not always a good surrogate for abundance in a 
dynamic modelling context
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