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ABSTRACT

Aim Species distribution models are often used to project species distributions
to different environmental conditions. However, most models do not consider
whether the importance of abiotic factors may change over time. If they
change, this has implications for the assessment of how abiotic changes affect
species distributions. Here, we use spatially explicit historical data on species
occurrences, climate and land use to test whether the importance of different
climatic and land-use drivers as determinants of species distributions has
remained constant over a period of > 60 years (1951-2014).

Location The Netherlands.

Methods Using species distribution models and a comprehensive country-
wide dataset at 5 x 5 km resolution, we modelled the distribution of a total of
398 pollinator species (bees, butterflies and hoverflies) for three periods
(1951-1970, 1971-1990 and 1998-2014). We then evaluated whether the
importance of variables related to climate (precipitation, temperature) and land
use (landscape composition and habitat fragmentation) in determining pollina-
tor distributions has changed over time.

Results Variables related to landscape composition were highly important in
determining pollinator distributions in all periods. Precipitation was generally
less important than temperature, and habitat fragmentation less than landscape
composition. Land-use variables remained equally important across time for all
pollinator groups, except for bees where the importance of habitat fragmenta-
tion decreased significantly over time. Among climate variables, the importance
of precipitation did not change across time for any pollinator group. However,
the importance of temperature increased significantly in recent times for bees
and hoverflies.

Main conclusions Determinants of species distributions can change in their
importance over time when changes in the magnitude and range of environ-
mental conditions occur. Given future temperature rises, our results imply that
species distribution models calibrated with current climatic conditions may not
adequately predict the future importance of environmental factors in driving
species distributions.

Keywords

biodiversity change, climate change, ecological niche models, environmental
variable importance, global warming, habitat fragmentation, habitat loss,
species distribution models
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INTRODUCTION

Recent rapid changes in climatic conditions (e.g. temperature
and precipitation; McCain & Colwell, 2011) have raised con-
siderable concerns about their effect on biodiversity (e.g.
Thomas et al., 2004). For instance, changes in temperature
(Dawson et al.,, 2011) and the increase of extreme weather
events (Hansen et al., 2012) have led to important changes
in biodiversity around the globe. Moreover, during the last
century, biodiversity has experienced alarming declines and
functional shifts due to the effects of land-use changes such
as habitat loss (Meyfroidt & Lambin, 2011), habitat fragmen-
tation (Krauss et al, 2010) and land-use intensification
(Tscharntke et al., 2005). Climate and land-use change are,
therefore, considered to be key drivers of biodiversity loss
today and, particularly when combined, they can reduce suit-
able habitats for species and disrupt ecological interactions,
potentially driving species to extinction (Fox et al., 2014).

Climate and land-use are unlikely to change in parallel
(Fox et al., 2014). For example, the rate of temperature rise
increased in recent decades (Hansen et al., 2012), while
major habitat changes in several industrialized countries were
more intense before 1970 (Fuchs et al., 2015). In regions that
have experienced strong climate and land-use changes, the
range and magnitudes of environmental variables have thus
changed through time. If a given climate or land-use variable
changes, the range and magnitude of this environmental
variable might increase to values that are not equally suitable
for a species. Consequently, the importance of such a vari-
able in determining the distribution of species will also
increase. However, if the range of values of an environmental
variable (within the study region) is equally suitable or
unsuitable to a species, the importance of this variable in
determining the distribution of a species will be minimal.
Therefore, the magnitude of the effect of an environmental
variable in determining the distribution of a species depends
on the range of values the environmental variable has within
the study area, but also on the spatial scale (extent and grain
size) of the dataset (Pearson & Dawson 2003). The different
temporal and regional patterns of climate and land-use vari-
ables and their range of values may thus impose different
effects on the distribution of biodiversity.

Several tools have been developed to investigate changes in
climate and land-use conditions (see Klein Goldewijk et al.,
2011; Stocker et al., 2013) and how these changes may
impact the distribution of biodiversity (Elith & Leathwick,
2009). Species distribution models (SDMs; Thuiller, 2004)
are often used to analyse the effects of climate and land use
on biodiversity and to project species distributions under
potential future global change scenarios. Generally, SDM
projections into the future are based on present-day species
responses to climatic and land-use drivers, which are then
extrapolated across time using future climate and land-use
scenarios. However, changes in the importance of drivers of
species distributions across space and time are little explored.
This is of potential concern for the extrapolation of SDMs to
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areas where the range of values of the environmental vari-
ables differs to areas where the model was trained, e.g. in the
case of expanding range margins under climate change
(Eskildsen et al., 2013). Recent studies suggest that the selec-
tion of predictors and the range of environmental conditions
across different time periods and study regions is, therefore,
of central importance for accurate predictions of SDMs (e.g.
Randin ef al., 2006; Austin & Van Niel, 2011). Hence, it is
crucial to evaluate how variability in global change drivers
affects their importance in SDMs for driving species distribu-
tions. A key limitation for such evaluations is that future
empirical data are not available against which projections
can be validated. However, the availability of historical infor-
mation on biodiversity and environmental factors across the
same spatial domain allows for exploring the dynamics of
such relationships and the validation of model results.

Here, we use a unique set of spatially explicit species
occurrence records of several groups of flower visitors (bees,
butterflies and hoverflies; hereafter referred to as ‘pollina-
tors’) and environmental data from the Netherlands from
1951 to 2014 to investigate whether the importance of cli-
mate (temperature and precipitation) and land use (i.e. land-
scape composition and habitat fragmentation) as drivers of
species distributions has changed over time. A pollinator’s
access to feeding and nesting resources greatly depends on
landscape conditions (Winfree et al., 2011). We, therefore,
expect landscape composition and habitat fragmentation to
be of high importance in determining species distributions.
Moreover, although small-scale land-use changes are still tak-
ing place, most large-scale land-use changes in the Nether-
lands have occurred before the 1990s and land-use dynamics
are now less accentuated (Harms et al., 1987; European
Environment Agency 2010). Hence, we expect that the
importance of land-use factors has decreased or remained
relatively constant over the considered time period. The
recently recorded changes in precipitation regimes and tem-
perature in our study area (Klein Tank, 2004; Ligtvoet et al.,
2013) might have led to changes in habitat suitability for
Dutch pollinators. Specifically, we expect that climate has
recently become more important in determining species dis-
tributions than in previous decades. Finally, as species func-
tional traits that constrain their tolerance and responses to
environmental changes vary between the different pollinator
groups (Aguirre-Gutiérrez et al., 2016), we expect that the
importance of a given environmental variable for driving the
distribution of species within the study region might differ
between pollinator groups.

MATERIALS AND METHODS

Study region and time periods

The Netherlands has been intensely sampled for biodiversity
since the early 19th century, with high-quality species distri-
bution data being available at the country level across several
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decades. The Netherlands has also experienced major changes
in climate (KNMI, 2014) and land-use conditions (Knol
et al., 2004; Hazeu et al, 2010) over the last century. All
three aspects (biodiversity, climate and land use) are well
documented with spatially explicit data across more than
50 years. Important increases in average temperature in the
Netherlands have been recorded over the last century
(c. 1.7°C; Ligtvoet et al., 2013), with the most rapid warming
taking place during the last 20 years (Klein Tank, 2004). This
might strongly affect the distribution of pollinators. Impor-
tant changes in the temporal distribution and amount of
precipitation have also been observed, with the average
annual winter precipitation increasing by c¢. 20% during the
last century (Klein Tank, 2004; Ligtvoet et al, 2013). In
addition, after the Second World War (i.e. during 1950—
1970), the Netherlands suffered rapid natural vegetation loss
and pronounced agricultural intensification with an associ-
ated increase in pesticide use (Harms et al., 1987). After
1990, there was an increasing investment in conservation
measures and agro-environmental schemes, especially since
the turn of the millennium (Kleijn & Sutherland, 2003).
Given these observed changes in climate and land use, we
binned the occurrence records (see below) into three dis-
tinct time periods (TP1: 1951-1970, TP2: 1971-1990, TP3:
1998-2014) and analysed whether the importance of envi-
ronmental conditions in determining species distributions
has changed over time.

Species distribution data

We included three key pollinator taxa in our study: bees
(Hymenoptera: Apoidea), hoverflies (Diptera: Syrphidae) and
butterflies (Lepidoptera: Papilionoidea and Hesperioidea).
Presence records for each species across the three time peri-
ods were obtained for bees and hoverflies from the European
Invertebrate Survey (EIS-Nederland, www.eis-nederland.nl)
and for butterflies from the Dutch National Database of
Flora and Fauna (NDFF, www.ndff.nl). Experts from the EIS
and the NDFF have extensively assessed the quality of species
identification and location accuracy of all species presence
records that we included in our study. More details about
the quality evaluation can be found at www.ndff.nl/validatie.
All species occurrence records were compiled at a resolu-
tion of 5 x 5 km grid cells to accommodate the higher
uncertainty in geographical coordinates of the older records
relative to the higher location accuracy of the more recent
records. To be able to include rare and narrowly distributed
species (which are likely to be more strongly affected by
changes in environmental conditions), we included species
that were present in as few as ten 5 x 5 km grid cells and
only those that were represented in each of the three time
periods. Our selection criteria allowed us to analyse a total
of 398 pollinator species, including 178 bee species, 52 but-
terfly species, and 168 species of hoverflies (Table S1 in
Appendix S1 in Supporting Information). From a total of
1820 grid cells (5 x 5 km each) in the Netherlands, 914 had
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records for bees in TP1, 894 for butterflies and 1094 for
hoverflies. In TP2, bees were present in 972 grid cells, butter-
flies in 1484 and hoverflies in 1376. In TP3, bees were sam-
pled in 1346 grid cells, butterflies in 1655 and hoverflies in
1592 (see Fig. SI in Appendix S1 for the spatial distribution
of the sampled grid cells across time).

Climatic data

We obtained climate data for the Netherlands on maximum
and minimum values of temperature and average values of
temperature and precipitation from the project ‘ClimateEU:
historical and projected climate data for Europe’ (Wang
et al., 2012). Climatic data were obtained at the same resolu-
tion as the land use and species distribution data (5 x 5 km
grid cells) and aggregated as an average for each of the three
time periods. These data were used to calculate the 19 biocli-
matic variables described in Hijmans et al. (2005). The bio-
climatic variables represent annual trends in climatic
conditions, seasonality and climate extremes. We only
included variables with Pearson’s correlation coefficients < |
0.65| (Figs S2-S4 in Appendix S1), a threshold well below
the one which is estimated to start distorting model predic-
tions (Dormann et al., 2013). The choice of which variable
would be excluded from the analyses was done by taking
into consideration which variables are known to determine
most strongly the distribution of insects, e.g. those that cap-
ture extreme conditions during the year (see Table 1 for
selected variables). These variables may have important
impacts on the distribution and persistence of pollinators
(e.g. Rasmont et al., 2015).

Land-use data

Land-use data were obtained from the geo-information
department of Wageningen University (www.wageningenur.
nl) with an original resolution of 25 x 25 m pixels. The
land-use map for the oldest time period (TP1) is based on
topographic cartography and the newer maps (TP2—TP3) are
based on remote sensing imagery, all of them with high
land-use classification accuracy ranging from 85% to 98%
(Knol et al., 2004; Hazeu et al., 2010). The years of the land-
use maps represent the central points in time for each of the
time periods for which the species data were obtained: 1960
(representing TP1, see above), 1980 (TP2) and 2008 (TP3).
As land-use data from more recent time periods had more
detailed information on land-use classes than data from
older time periods, the land-use maps were reclassified to
derive eight consistent and representative land-use types:
agriculture, grassland, forest, moors/peat, sandy soils,
swamps, urban and water. Based on these reclassified land-
use maps, we calculated a total of 12 land-use metrics for
each 5 x 5 km grid cell and for each time period (Table 1).
These land-use metrics can be important in determining the
distribution of pollinators because they represent limiting
factors related to feeding and nesting resources or to
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Table 1 Variables used in species distribution models of Dutch
pollinator groups (bees, butterflies and hoverflies) and their
grouping for subsequent analyses in the mixed-effects model.
The variables were divided into four groups related to climate
(temperature and precipitation) and land use (landscape
composition and habitat fragmentation). The climatic variables
were incorporated in the models as yearly averages across the
study period.

Variable specifications

Climate or land-use
variable input in

Variable names mixed model as: Units
Climate variables
Annual precipitation Precipitation mm
Precipitation of driest month Precipitation mm
Precipitation of warmest quarter Precipitation mm
Mean diurnal range [mean of Temperature °C
monthly (maximum
temperature—minimum
temperature) |
Mean temperature of wettest quarter ~ Temperature °C
Mean temperature of driest quarter Temperature °C

Mean temperature of warmest quarter Temperature °C
Land-use variables

% of each land-use class Landscape %
(agriculture, grassland, forest, composition
moors/peat, sandy soils,
swamps, urban and water)
Number of land-use classes Landscape Count
composition
Total edge density Habitat m/ha
fragmentation
Average patch area of Habitat ha
suitable habitat fragmentation

movement between suitable habitat types (see Aguirre-
Gutiérrez et al., 2015). The calculated metrics characterize
two major aspects of landscape and habitat structure
(Tscharntke et al., 2012): landscape composition (nine met-
rics) and habitat fragmentation (two metrics) (see below).
For landscape composition, the nine metrics reflected the
percentage of each land-use type per grid cell (eight metrics)
as well as the total number of land-use classes per grid cell
(one metric). The latter was included as a proxy of spatial
heterogeneity, which can influence the composition and
turnover of species assemblages (Tscharntke et al., 2012).
Habitat fragmentation was represented by two metrics: the
average area of suitable habitat patches and total edge
density. Following the evaluation of land-use suitability for
pollinators from Vogiatzakis et al. (2015), we classified the
land-use classes grassland, moors/peat, forest and sandy soils
as ‘suitable habitat’, and agriculture, urban, water and
swamps as ‘non-suitable habitat’. Sandy soils were classified
as suitable because of the natural variation in floral resources
that they offer. Agriculture was considered not suitable
because in the Netherlands it mostly refers to highly intensi-
fied monocultures with high input of fertilizers and
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pesticides (see Aguirre-Gutiérrez et al., 2015) and temporally
restricted flower resource availability. For total edge density,
we calculated the density of edges between all land-use types
in a grid cell.

All calculations of land-use metrics were carried out in R
(v3.3.1; Development Core Team, http://cran.r-project.org)
with the ‘SDMTools’ package (VanDerWal et al., 2014).

Changes in climatic and land-use conditions over
time

We quantified the changes in abiotic conditions (climate and
land use) that took place in the Netherlands between consec-
utive time periods (TP1-TP2, TP2-TP3). We also analysed
the overall changes that occurred between the first and last
period (TP1-TP3). The changes were calculated as the post-
period minus the pre-period value (e.g. TP3—TP1) for each
of the 18 climatic and land-use variables (Table 1). After
obtaining the change values, we used a Student’s t-test to
investigate if significant changes in climate and land-use con-
ditions between time periods occurred.

Species distribution models

For each bee, butterfly and hoverfly species in each time
period (TP1, TP2 and TP3), we fitted SDMs using the max-
imum entropy modelling approach with MaXENT v.3.3.3¢
(Phillips et al., 2006). MAXENT is a machine learning tech-
nique that has been extensively used for modelling large
datasets of species in areas with varied sets of environmen-
tal conditions, rendering high model accuracy (Elith & Gra-
ham, 2009; Marshall et al., 2015). We selected MAXENT
after an in-depth comparison with other algorithms for a
wide range of species with different sample sizes and spatial
distributions of their recording locations in our study area
(for details, see Aguirre-Gutiérrez et al., 2013). This com-
parison showed that MAXENT was one of the best perform-
ing algorithms with high scores of various evaluation
metrics. We fitted the species distribution models in
MAXENT using only linear and quadratic feature types (i.e.
transformations of variables; see Elith et al., 2011) to avoid
model overfitting (Merow et al, 2013). More in-depth
explanations of the Maxent modelling and feature types
can be found in Elith ef al. (2011).

As species sampling collections are often geographically
biased (e.g. Merow et al., 2013), this can also generate bias
in the selection of environmental gradients. We accounted
for this by only extracting background information from
those collection localities where species from the same polli-
nator group had been sampled (‘target group approach’,
Mateo et al., 2010). This has been shown to considerably
increase model performance (Mateo et al., 2010). Moreover,
this approach allows to account for possible sampling and
environmental selection biases because the modelled data
contain the same collection bias as the data used for the
background selection (Elith et al., 2011). To account for the
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variation obtained when creating model predictions with dif-
ferent sets of data, we computed SDMs for each species
using 10 repetitions with a bootstrap approach where 80% of
the data were used for training and 20% for model testing.
We used the area under the curve (AUC) value of the recei-
ver-operating characteristic to summarize model perfor-
mance (Hanley & McNeil, 1982). AUC values are often
correlated with other model performance measures such as
the true skill statistic (TSS; Allouche et al., 2006). However,
AUC values are constrained by the fraction of the geographi-
cal area covered by a species and are often low for species
with large sample sizes and increase when the number of
sampling records decreases (Aguirre-Gutiérrez et al., 2013;
van Proosdij et al., 2016). As different models are con-
structed with different sets of data, we obtained an ensemble
model for each species to account for between-model vari-
ability and to avoid basing our model selection on AUC val-
ues only. This was done by averaging the suitability scores
across the 10 model repetitions. We used this ensemble
model in subsequent analyses.

To investigate the importance of environmental drivers in
determining species distributions, we obtained three different
evaluation metrics for each predictor variable: the ‘permuta-
tion importance’, ‘percentage contribution’ and the ‘test
gain’ (Phillips, 2006). A preliminary analysis with the ‘test
gain’ metric showed that its importance values were greatly
dependent on the number of occurrence records per species.
This was not the case for the two other evaluation metrics
(permutation importance and percentage contribution).
These two evaluation metrics have further been successfully
applied in other studies (e.g. Gallardo & Aldridge, 2013;
Quillfeldt et al., 2013). We, therefore, excluded the test gain
metric from further analysis. For the permutation impor-
tance, the values of the focal variable are randomly permuted
on the training presence and background data. The model is
then re-evaluated on the permuted data and the change in
the model’s AUC is calculated. Large changes in AUC value
indicate a variable with high importance for the final model.
For the percentage contribution, during each model iteration
MaxeNT identifies which environmental variables contribute
to the fitted model by detecting the change in model gain
after modifying the coefficient for a single feature (Phillips,
2006). MAXENT then assigns the change in model gain to the
environmental variable that the feature depended on to
obtain its final contribution. In the percentage contribution,
the evaluation of the importance value of each variable
depends on the specific path taken by the algorithm to
obtain the optimal model. Hence, similar models may pre-
sent different importance values for the same environmental
variable.

For the final values of the two evaluation metrics (permu-
tation importance and percentage contribution), we averaged
the results of the 10 model repetitions. The obtained impor-
tance values were used to assess if and how the importance
of drivers varied between the three analysed time periods for
each of the three pollinator groups (see below).
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Environmental drivers of pollinator distributions
across time

We used a linear mixed-effects model with Gaussian error
structure (Zuur et al., 2009) to test whether the importance
of environmental drivers (i.e. seven climate variables and 11
land-use variables; Table 1) in determining pollinator distri-
butions differed among pollinator groups, time periods and
type of environmental variable (temperature, climate, land-
scape composition and habitat fragmentation, Table 1). The
averaged variable importance values (permutation impor-
tance, percentage contribution) across the four environmen-
tal variables groups outlined above were used as response
variables and the group of environmental variables (precipi-
tation, temperature, landscape composition and habitat frag-
mentation), the pollinator group (bee, butterfly and
hoverfly) and the time period (TP1, TP2 and TP3; included
as a factorial term) as well as their two- and three-way inter-
actions as explanatory variables. We further used the species
identity and the SDM model accuracy (AUC) as random fac-
tors in the mixed-effects model. We then tested for pairwise
significant differences in environmental variable importance
between pollinator groups, time periods and type of environ-
mental variable by performing post hoc pairwise comparison
tests (Tukey’s HSD).

All analyses were performed using the importance values
of both the permutation importance and the percentage con-
tribution. However, given that the percentage contribution
test depends on the particular path that MAXENT uses to
obtain the optimal solution (Phillips, 2006) and the permu-
tation importance tests depend only on the final model, we
present the permutation importance results in the main text
and the percentage contribution in the supplementary mate-
rial.

The mixed-effects models were implemented using the
‘Ime4’ package (Bates et al., 2015) and the multiple compar-
ison tests using the ‘multcomp’ package (Hothorn et al.,
2008) with the ‘glht’ function in the R platform (v3.3.1;
http://cran.r-project.org).

RESULTS

Spatial distribution of pollinators

We obtained a total of 1780 species distribution models for
bees, 520 for butterflies and 1680 for hoverflies per time per-
iod (i.e. 10 for each species) from which we constructed the
final ensemble model for each species within each pollinator
group (Table S1). The AUC values per pollinator group var-
ied depending on the number of records available for each
species. The average AUC scores for bees were 0.78, 0.76 and
0.75 for TP1, TP2 and TP3, respectively. For butterflies, the
average AUC scores were 0.77, 0.75 and 0.74 and for hover-
flies 0.75, 0.76 and 0.75 for TP1, TP2 and TP3, respectively.
The modelled pollinator distributions showed strong shifts
over time as a function of the climatic and land-use
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conditions (Fig. 1). Some of the 5 x 5 km grid cells lost
more than 30 pollinator species, whereas other grid cells
gained more than 40 species. These dynamics showed sub-
stantial variation among pollinator groups, time periods and
geographical location (Fig. 1).

Changes in climatic and land-use conditions over
time

All climate and land-use variables showed significant changes
between the first (1951-1970) and the last (1998-2014) time
period (Fig. 2; Table S2 in Appendix S1). Changes in the fre-
quency distributions of each variable are provided in Figs
S5-S7 in Appendix S1. While average annual precipitation
per 5 x 5 km grid cell increased between the first and last
time periods (25 mm on average), average values of precipi-
tation of driest month and precipitation of warmest quarter
decreased (Fig. 2). All temperature-related variables showed
increases between 0.2 °C (mean diurnal range) and 3.8 °C
(mean temperature of driest quarter) (Fig. 2). For landscape
composition, average cover of forest, swamps and urban
classes increased, whereas the average coverage of agriculture,
grasslands and moors/peat decreased (Fig. 2). For fragmenta-
tion variables, the average patch area of suitable habitats also
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showed significant declines of up to 90 ha per 5 x 5 km
grid cell (Table S2 in Appendix S1). The total amount of
edges also increased significantly, and the number of land-
use classes increased on average by 1.5 from the first to the
last time period (Table S2 in Appendix S1).

Importance of climate and land use in determining
pollinator distributions across time

Analyses based on ‘permutation importance’ values (see
Table 2 for statistical details) and on the ‘percentage contribu-
tion” values gave qualitatively similar results (Figs 3 and S8;
Tables S3—S8 in Appendix S1). The most important exception
was precipitation for which a slight decrease in importance
over time was detected using the ‘percentage contribution’ for
all three pollinator groups, while ‘permutation importance’
showed a more static pattern (Tables S6-S8 in Appendix S1).
In all time periods, at least one climate-related variable was
important and statistically significant in determining pollina-
tor distributions (Fig. 3a—b; Table S3 in Appendix S1). Tem-
perature (Fig. 3b) tended to have higher importance values
than precipitation (Table S4 in Appendix S1). While the
importance of temperature increased significantly between
TP1 and TP3 for bees and hoverflies, the precipitation

TP1-TP3

Change in

number
of species

1

300000 L L
50000 150000 250000

50000 150000 250000

Longitude (m)

Figure 1 Maps of net changes in the number of species per pollinator group in 5 x 5 km grid cells between time periods (TP1-TP2:
1951-1970 vs. 1971-1990; TP2-TP3: 1971-1990 vs. 1998-2014; TP1-TP3: 1951-1970 vs. 1998-2014) across the Netherlands. The maps
show the difference between the predicted number of species colonizing a grid cell and the number of species abandoning the same grid
cell. Blue colours represent cells with more species colonizing. Red colours represent more species abandoning the grid cell.
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Figure 2 Average changes in climatic (a, b) and land-use (c)
conditions per 5 x 5 km grid cell across the Netherlands
between the first (TP1, 1951-1970) and the last (TP3, 1998—
2014) time period. Changes were calculated as the post-period
minus the pre-period value using Student’s t-tests. Significance
levels: ***P < 0.001; **P < 0.01; *P < 0.05; ns: not significant.
For statistical details, see the Supplementary material
Appendix S1, Table S2. Details on changes in edge density,
number of land-use classes and average patch area of suitable
habitat can be found in the Supplementary material

Appendix S1, Table S2.

importance did not significantly increase across time for any
of the three pollinator groups (Fig. 4).

Land-use variables also had a statistically significant effect
in determining pollinator distributions (Fig. 3c—d; Table S3
in Appendix S1). The importance of fragmentation

702

Table 2 Statistical details of the mixed-effects model analysing
the environmental variable importance (‘permutation
importance’) across pollinator groups and time periods in the
Netherlands. Further statistical details of post hoc tests are
found in Tables S3-S5. EV: Environmental Variables (climate:
precipitation and temperature; land use: composition and
fragmentation); TP: Time period (TP1: 1951-1970,

TP2: 1971-1990, TP3: 1998-2014); PG: Pollinator group (bees,
butterflies and hoverflies).

Mean sum of

Sum of squares squares df F P
EV 227.87 75.96 3 200.48 < 0.001
TP 0.64 0.32 2 0.85 0.43
PG 1.29 0.64 2 1.70 0.18
EV:TP 41.66 6.94 6 18.32 < 0.001
EV:PG 22.35 3.73 6 9.83 < 0.001
TP:PG 0.80 0.20 4 0.53 0.72
EV:TP:PG 14.59 1.22 12 3.21 < 0.001

significantly decreased from TP1 to TP3 for bees, but not for
butterflies and hoverflies (Fig. 4). When comparing climate
with land-use variables, overall, temperature and landscape
composition showed the highest importance for species dis-
tributions across time, being stronger than the importance of
precipitation and fragmentation (Fig. 3). Moreover, while in
TP1 landscape composition was more important than tem-
perature, this trend reverted and temperature became signifi-
cantly more important than landscape composition in the
last time period (TP3) for all three pollinator groups
(Table S4 in Appendix S1).

DISCUSSION

Using spatially explicit historical data (1951-2014) of species
occurrences, climate and land use, we investigated to what
extent the importance of climate and land-use variables as
determinants of Dutch pollinator distributions has changed
over time. The observed shifts in the modelled species distribu-
tions across the last half-century for all three pollinator groups
may be mainly the result of the observed changes in climate
and land-use conditions (Fig. 1). The changes related to tem-
perature and landscape composition emerged as particularly
important (Fig. 2). Our results suggest that, over the studied
time period, precipitation and habitat fragmentation variables
tended to have a constantly high importance in determining
pollinator distributions, but being lower in importance than
temperature and landscape composition. Moreover, our
results suggest that in recent decades, the importance of tem-
perature has significantly increased and that it is currently
more important than landscape composition in determining
the distributions of all three pollinator groups.

Within temperate regions such as the Netherlands, the
recent rapid changes in temperature and precipitation as well
as increases in extreme weather events may have strong
effects on population dynamics of pollinators (Rasmont
et al., 2015). Our results suggest that the range of values of
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the included temperature-related variables was similarly suit-
able between the earliest time periods for the pollinator
groups analysed here. However, this has changed in recent
decades where the importance of temperature-related vari-
ables for bee and hoverfly distributions has increased,
becoming comparable in importance to those observed for
butterflies. The lack of a significant change in the importance
of temperature for butterflies could be explained by their
already continuously high importance set by temperature
and their wide within-group differences in habitat prefer-
ences and responses to climate impacts (e.g. Parmesan et al.,
1999; Heikkinen et al., 2010). Meanwhile for some species,
the changes in temperature conditions could had have an
important impact on their distribution for other species such
changes did not represent an important effect, buffering in
this way the changes in the importance of temperature at the
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group level (see Fig. 3 wider intervals for butterflies). In con-
trast, the within-group differences for bees and hoverflies
seem to be less accentuated, showing less variation among
species in the importance of temperature as a driver of their
distribution. Previous studies have also reported spatial shifts
in the distribution of these pollinator groups over the study
area (e.g. Aguirre-Gutiérrez et al., 2016). The fact that the
importance of climate for butterflies has been consistently
high across the last half-century may be a reflection of the
high susceptibility of butterflies to even small changes in
temperature-related conditions in contrast to the other polli-
nator groups here studied (Heikkinen et al., 2010; Oliver
et al., 2015). Overall, the future importance of climate as a
driver of the distribution of pollinator species may thus
depend on the current climate limits of the study region and
the pollinator group investigated.
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Figure 4 Results of mixed-effects model for changes in the
importance of climate and land-use drivers for bee, butterfly
and hoverfly distributions between the first (TP1, 1951-1970)
and the last (TP3, 1998-2014) time period in the Netherlands.
Average changes in the importance (‘permutation importance’)
of climate variables are shown on the left and those of land-use
variables on the right side of the dotted line. Climate variables
include precipitation (annual precipitation, precipitation of
driest month, precipitation of warmest quarter) and temperature
(mean diurnal range, mean temperature of wettest quarter,
mean temperature of driest quarter, mean temperature of
warmest quarter), and land-use variables include landscape
composition (percentage of each land-use class, number of land-
use classes) and habitat fragmentation (total edge density,
average patch area of suitable habitat). The change in
importance is expressed as square-root transformed values based
on the mixed-effects model results from Fig. 2. Significance
level: ##%P < 0.001. For statistical details, see Supplementary
material Appendix S1, Tables S3-S5.

Like in other highly industrialized countries, the major
land-use changes in the Netherlands have occurred in earlier
time periods (c. 1950-1970), whereas they are less pro-
nounced during the last half-century. In fact, we observed
that although the average values of landscape composition
have fluctuated over the period analysed, the range in these
values did not change strongly (Fig. S6). Nevertheless, land
use, particularly landscape composition, remains of high
importance in determining species distributions. This may
reflect the high importance of fine-scale habitat availability
(here represented by landscape composition) for pollinators.
Indeed, climatically suitable areas may not be occupied by
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species if habitat conditions remain unsuitable (Oliver et al.,
2012). We found a decrease in the importance of habitat
fragmentation (i.e. habitat patch area and edge density) for
bees, and also to a lesser degree for butterflies and hoverflies
(but small and not significant). This confirms our initial
expectations of slightly lower impacts of land-use changes in
the present time period (TP3) in comparison to initial peri-
ods (e.g. TP1 and TP2; Fig. 3c—d) given that most large-scale
land-use changes have ceased decades ago in the Netherlands
(Harms et al., 1987; European Environment Agency 2010).
As a consequence, the already existing restrictions for the
accessibility of species to feeding and nesting resources in the
surrounding landscape (e.g. Steffan-Dewenter, 2003) have
been kept relatively constant with no major changes in the
importance of fragmentation variables. Moreover, also the
increase in importance of temperature, for bees and hover-
flies, may hinder the already low possible impact of habitat
fragmentation. We expect that in biodiversity-rich countries
with expanding agriculture and economy and large areas
becoming fragmented and changed in terms of their land-
scape composition (see Lambin & Meyfroidt, 2011), future
impacts of land-use changes may be even more pronounced
than in highly industrialized countries where major land-use
changes have often ceased decades ago.

Overall, our results call for SDM applications that capture
how the importance of environmental drivers for species dis-
tributions may change in different areas and over time.
Moreover, these applications should try to capture specific
meta-population processes such as dispersal limitation and
species interactions. Such processes are not yet fully
accounted for in current SDMs (Franklin, 2010; Martinez-
Freiria ef al, 2016) and they could also influence the
importance of environmental drivers in defining species dis-
tributions (Ehrlén & Morris, 2015). Accounting for these
processes and for the possible changes in the importance of
environmental drivers is essential given the predicted future
changes in environmental conditions. This is essential
because species may currently occupy unsuitable sites that
were suitable in the past, representing a landscape suitability
debt (Krauss et al., 2010). However, species may also not yet
fully occupy already suitable habitat areas due to a lack of
dispersal (Schurr et al., 2012). Thus, coupling SDMs with
other more trait-based community-level and mechanistic
approaches may be an appropriate solution for analysing
future species responses to climate and land-use change
(Pacifici et al., 2015).

CONCLUSIONS

Predictions based on species distribution models strongly rely
on the constancy of the relationship between species occur-
rences and environmental conditions. However, how the
importance of environmental variables for species distribu-
tions changes over time has been little studied. Our historical
analysis shows that temperature and landscape composition
have been the most important drivers for pollinator
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distributions across time. However, our study also reveals
that the importance of temperature has strongly increased in
recent time periods at least for two out of three pollinator
taxa. This suggests that ongoing and future climate change
could continue to increase in importance as a driver of spe-
cies distributions. The (non-)stationarity of climate versus
land-use drivers of species distributions requires further test-
ing, e.g. with historical data for other taxa, other areas such
as tropical and arctic regions, and at different spatial extents
and grain sizes. This would help to deepen our understand-
ing about the generality of our findings and its relevance to
other taxonomic and functional groups and regions.
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